pyreal.transformers.DataFrameWrapper#
- class pyreal.transformers.DataFrameWrapper(wrapped_transformer, **kwargs)[source]#
Allows use of standard sklearn transformers while maintaining DataFrame type. Same functionality as Transformer (kept for backwards compatibility).
- __init__(wrapped_transformer, **kwargs)[source]#
Initialize the wrapped transformer
- Parameters:
wrapped_transformer –
Methods
__init__(wrapped_transformer, **kwargs)Initialize the wrapped transformer
data_transform(x)Transform x using the wrapped transformer :param x: The dataset to transform :type x: DataFrame of shape (n_instances, n_features)
fit(x, **params)Fit the wrapped transformer
fit_transform(x, **fit_params)Fits this transformer to data and then transforms the same data
inverse_data_transform(x_new)Inverse transform x_new using the wrapped transformer :param x_new: The dataset to inverse transform :type x_new: DataFrame of shape (n_instances, n_transformed_features)
inverse_transform(x_new)Transforms data x_new from new feature space back into the original feature space.
inverse_transform_explanation(explanation)Transforms the explanation from the second feature space handled by this transformer to the first.
inverse_transform_explanation_additive_feature_contribution(...)Inverse transforms additive feature contribution explanations
inverse_transform_explanation_additive_feature_importance(...)Inverse transforms additive feature importance explanations
inverse_transform_explanation_decision_tree(...)Inverse transforms decision-tree explanations
inverse_transform_explanation_example(...)Inverse transforms example-based explanations
inverse_transform_explanation_feature_based(...)Inverse transforms feature-based explanations
inverse_transform_explanation_feature_contribution(...)Inverse transforms feature contribution explanations
inverse_transform_explanation_feature_importance(...)Inverse transforms feature importance explanations
inverse_transform_explanation_similar_example(...)Inverse transforms similar-example-based explanations
set_flags([model, interpret, algorithm])transform(x)Wrapper for data_transform.
transform_explanation(explanation)Transforms the explanation from the first feature space handled by this transformer to the second.
transform_explanation_additive_feature_contribution(...)Transforms additive feature contribution explanations
transform_explanation_additive_feature_importance(...)Transforms additive feature importance explanations
transform_explanation_decision_tree(explanation)Inverse transforms feature-based explanations
transform_explanation_example(explanation)Transforms example-based explanations
transform_explanation_feature_based(explanation)Transforms feature-based explanations
transform_explanation_feature_contribution(...)Transforms feature contribution explanations
transform_explanation_feature_importance(...)Transforms feature importance explanations
transform_explanation_similar_example(...)Transforms example-based explanations