pyreal.transformers.NestedFrameToNumpy3d#
- class pyreal.transformers.NestedFrameToNumpy3d(model=True, interpret=False, algorithm=None, require_values=False)[source]#
- Convert sktime nested DataFrame format into NumPy ndarray with shape (n_instances, n_variables, n_timepoints). - __init__(model=True, interpret=False, algorithm=None, require_values=False)#
- Set this Transformer’s flags. - Parameters:
- model (Boolean) – If True, this transformer is required by the model-ready feature space. It will be run any time a model prediction is needed 
- interpret (Boolean) – If True, this transformer makes the data more human-interpretable 
- algorithm (Boolean) – If True, this transformer is required for the explanation algorithm. If algorithm is False, but model is True, this transformer will be applied only when making model predictions during the explanation algorithm. Cannot be True if if the model flag is False 
- require_values (Boolean) – If True, this transformer must be given values alongside the explanation in order to work for local explanations (for global explanations, this parameter is ignored) 
 
 
 - Methods - __init__([model, interpret, algorithm, ...])- Set this Transformer's flags. - data_transform(x)- param x:
- Input sktime nested DataFrame 
 - fit(x, **params)- Fit this transformer to data - fit_transform(x, **fit_params)- Fits this transformer to data and then transforms the same data - inverse_data_transform(x_new)- Wrapper for inverse_data_transform. - inverse_transform(x_new)- Transforms data x_new from new feature space back into the original feature space. - inverse_transform_explanation(explanation)- Transforms the explanation from the second feature space handled by this transformer to the first. - inverse_transform_explanation_additive_feature_contribution(...)- Inverse transforms additive feature contribution explanations - inverse_transform_explanation_additive_feature_importance(...)- Inverse transforms additive feature importance explanations - inverse_transform_explanation_decision_tree(...)- Inverse transforms decision-tree explanations - inverse_transform_explanation_example(...)- Inverse transforms example-based explanations - inverse_transform_explanation_feature_based(...)- Inverse transforms feature-based explanations - inverse_transform_explanation_feature_contribution(...)- Inverse transforms feature contribution explanations - inverse_transform_explanation_feature_importance(...)- Inverse transforms feature importance explanations - inverse_transform_explanation_similar_example(...)- Inverse transforms similar-example-based explanations - set_flags([model, interpret, algorithm])- transform(x)- Wrapper for data_transform. - transform_explanation(explanation)- Transforms the explanation from the first feature space handled by this transformer to the second. - transform_explanation_additive_feature_contribution(...)- Transforms additive feature contribution explanations - transform_explanation_additive_feature_importance(...)- Transforms additive feature importance explanations - transform_explanation_decision_tree(explanation)- Inverse transforms feature-based explanations - transform_explanation_example(explanation)- Transforms example-based explanations - transform_explanation_feature_based(explanation)- Transforms feature-based explanations - transform_explanation_feature_contribution(...)- Transforms feature contribution explanations - transform_explanation_feature_importance(...)- Transforms feature importance explanations - transform_explanation_similar_example(...)- Transforms example-based explanations