pyreal.transformers.Normalizer#
- class pyreal.transformers.Normalizer(norm='l2', **kwargs)[source]#
Normalizes numeric features using the l1, l2, or max norm
- __init__(norm='l2', **kwargs)[source]#
Initialize the transformer
- Parameters:
norm (str, optional) – The norm to use to normalize each non zero sample. If norm=’max’ is used, values will be rescaled by the maximum of the absolute values. Can take values {‘l1’, ‘l2’, ‘max’}. Defaults to ‘l2’.
Methods
__init__([norm])Initialize the transformer
data_transform(X)Transform a dataset
fit(X[, y])Fits a dataset to the transformer
fit_transform(X[, y])Fits and transforms
inverse_data_transform(x_new)Wrapper for inverse_data_transform.
inverse_transform(x_new)Transforms data x_new from new feature space back into the original feature space.
inverse_transform_explanation(explanation)Transforms the explanation from the second feature space handled by this transformer to the first.
inverse_transform_explanation_additive_feature_contribution(...)Inverse transforms additive feature contribution explanations
inverse_transform_explanation_additive_feature_importance(...)Inverse transforms additive feature importance explanations
inverse_transform_explanation_decision_tree(...)Inverse transforms decision-tree explanations
inverse_transform_explanation_example(...)Inverse transforms example-based explanations
inverse_transform_explanation_feature_based(...)Inverse transforms feature-based explanations
inverse_transform_explanation_feature_contribution(...)Inverse transforms feature contribution explanations
inverse_transform_explanation_feature_importance(...)Inverse transforms feature importance explanations
inverse_transform_explanation_similar_example(...)Inverse transforms similar-example-based explanations
set_flags([model, interpret, algorithm])transform(x)Wrapper for data_transform.
transform_explanation(explanation)Transforms the explanation from the first feature space handled by this transformer to the second.
transform_explanation_additive_feature_contribution(...)Transforms additive feature contribution explanations
transform_explanation_additive_feature_importance(...)Transforms additive feature importance explanations
transform_explanation_decision_tree(explanation)Inverse transforms feature-based explanations
transform_explanation_example(explanation)Transforms example-based explanations
transform_explanation_feature_based(explanation)Transforms feature-based explanations
transform_explanation_feature_contribution(...)Transforms feature contribution explanations
transform_explanation_feature_importance(...)Transforms feature importance explanations
transform_explanation_similar_example(...)Transforms example-based explanations