pyreal.visualize.feature_bar_plot#
- pyreal.visualize.feature_bar_plot(explanation, select_by='absolute', num_features=5, transparent=False, flip_colors=False, precision=2, prediction=None, include_averages=False, include_axis=True, show=False, filename=None, paper=False, **kwargs)[source]#
Plot the most contributing features
- Parameters:
explanation (DataFrame or FeatureBased) – One output DataFrame from RealApp.produce_feature_contributions or RealApp.prepare_feature_importance OR FeatureBased explanation object
select_by (one of "absolute", "max", "min") – Method to use when selecting features.
num_features (int) – Number of features to plot
transparent (Boolean) – If True, the background of the figure is set to transparent.
flip_colors (Boolean) – If True, make the positive explanation red and negative explanation blue. Useful if the target variable has a negative connotation
precision (int) – Number of decimal places to print for numeric float values
prediction (numeric or string) – Prediction to display in the title
include_averages (Boolean) – If True, include the mean values in the visualization (if provided in explanation)
include_axis (Boolean) – If True, include the contribution axis
show (Boolean) – Show the figure
filename (string or None) – If not None, save the figure as filename
paper (boolean) – If true, increase font size to be more readable in papers
**kwargs – Additional parameters to pass into plt.barh
- Returns:
- pyplot figure
Bar plot of top contributors