pyreal.transformers.StandardScaler#
- class pyreal.transformers.StandardScaler(*, with_mean=True, with_std=True, **kwargs)[source]#
Standardizes numeric features to mean=0 and variance=1
- __init__(*, with_mean=True, with_std=True, **kwargs)[source]#
Creates a pyreal StandardScaler, and wraps it a DataFrameWrapper, then wraps the DataFrameWrapper
- Parameters:
with_mean (bool, optional) – If True, center the data before scaling.
with_std (bool, optional) – If True, scale the data to unit variance
equivalently ((or) –
deviation). (unit standard) –
Methods
__init__(*[, with_mean, with_std])Creates a pyreal StandardScaler, and wraps it a DataFrameWrapper, then wraps the DataFrameWrapper
data_transform(X)Transform a dataset
fit(X[, y, sample_weight])Fits a dataset to the transformer
fit_transform(x, **fit_params)Fits this transformer to data and then transforms the same data
inverse_data_transform(x_new)Wrapper for inverse_data_transform.
inverse_transform(X)Inverse transform X
inverse_transform_explanation(explanation)Transforms the explanation from the second feature space handled by this transformer to the first.
inverse_transform_explanation_additive_feature_contribution(...)Inverse transforms additive feature contribution explanations
inverse_transform_explanation_additive_feature_importance(...)Inverse transforms additive feature importance explanations
inverse_transform_explanation_decision_tree(...)Inverse transforms decision-tree explanations
inverse_transform_explanation_example(...)Inverse transforms example-based explanations
inverse_transform_explanation_feature_based(...)Inverse transforms feature-based explanations
inverse_transform_explanation_feature_contribution(...)Inverse transforms feature contribution explanations
inverse_transform_explanation_feature_importance(...)Inverse transforms feature importance explanations
inverse_transform_explanation_similar_example(...)Inverse transforms similar-example-based explanations
set_flags([model, interpret, algorithm])transform(x)Wrapper for data_transform.
transform_explanation(explanation)Transforms the explanation from the first feature space handled by this transformer to the second.
transform_explanation_additive_feature_contribution(...)Transforms additive feature contribution explanations
transform_explanation_additive_feature_importance(...)Transforms additive feature importance explanations
transform_explanation_decision_tree(explanation)Inverse transforms feature-based explanations
transform_explanation_example(explanation)Transforms example-based explanations
transform_explanation_feature_based(explanation)Transforms feature-based explanations
transform_explanation_feature_contribution(...)Transforms feature contribution explanations
transform_explanation_feature_importance(...)Transforms feature importance explanations
transform_explanation_similar_example(...)Transforms example-based explanations